POST
/
v3
/
openai
/
embeddings
curl --request POST \
  --url https://api.novita.ai/v3/openai/embeddings \
  --header 'Authorization: <authorization>' \
  --header 'Content-Type: <content-type>' \
  --data '{
  "input": {},
  "model": {},
  "encoding_format": "<string>"
}'
{
  "object": "<string>",
  "data": [
    {
      "index": 123,
      "embedding": [
        {}
      ],
      "object": "<string>"
    }
  ],
  "model": "<string>",
  "usage": {
    "prompt_tokens": 123,
    "total_tokens": 123
  }
}

Creates an embedding vector representing the input text.

Request Headers

Content-Type
string
required

Enum: application/json

Authorization
string
required

Bearer authentication format, for example: Bearer {{API Key}}.

Request Body

input
string | arrary
required

Input text to embed, encoded as a string or array of tokens. To embed multiple inputs in a single request, pass an array of strings or array of token arrays. The input must not exceed the max input tokens for the model (8192 tokens for text-embedding-ada-002), cannot be an empty string, and any array must be 2048 dimensions or less.

model
enum<string>
required

ID of the model to use. Enum: baai/bge-m3.

encoding_format
string

The format to return the embeddings in. Can be either float or base64.

Response

object
string
required

Fixed as list

data
array
required

List of embeddings vectors generated by the model.

index
integer
required

The index of the embedding vector.

embedding
array
required

The embedding vector.

object
string
required

Fixed as embedding

model
string
required

The ID of the model used.

usage
object
required

Usage information.

prompt_tokens
integer
required

The number of prompt tokens.

total_tokens
integer
required

The number of total tokens.