FLUX.1-dev

Unleash Your Creativity with the FLUX.1 [dev] Text-to-Image Model

ModelText to Image
black forest labs2025-09-29Hugging Face

One click deployment

On Demand
Deploy
gpu hot
README

\n \n\n# Run FLUX.1 [dev] on Novita AI\n**GitHub List: Novita AI Templates Catalogue\n\n## What is FLUX.1 [dev]?\n\nThe FLUX.1 [dev] model is a 12 billion parameter text-to-image model that uses a rectified flow transformer architecture to generate images from text descriptions. The platform requires users to agree to a non-commercial license in order to access its functionalities.\n\n \n\n## Key Features\n\n- Cutting-edge output quality, second only to FLUX.1 [pro].\n \n- Competitive prompt following, matching closed-source alternatives.\n \n- Trained using guidance distillation, making FLUX.1 [dev] more efficient.\n \n- Open weights to drive research and enable innovative workflows.\n \n- Usable for personal, scientific, and commercial purposes under the FLUX.1 [dev] Non-Commercial License.\n \n- Available via API from multiple providers, and integrated into ComfyUI and Diffusers.\n \n- Limitations:\n \n - Not intended for factual information, may amplify biases.\n \n - Restrictions on use, including prohibitions on harmful activities.\n \n\n## What is the Intended Use of FLUX.1 [dev]?\n\nDevelopers and artists aim to generate unique visual content from text prompts. It can be used in graphic design, advertising, content creation, and research.\n\n## Technical Details of FLUX.1 [dev]\n\n### Model Architecture\n\nFLUX.1 [dev] uses a 12 billion parameter rectified flow transformer architecture capable of generating images from text descriptions.\n\n### Training Data\n\nFLUX.1 [dev] utilizes diverse data sets from multiple sources, including public image libraries and edited collections.\n\n### Performance Benchmarks\n\nFLUX.1 [dev] demonstrates excellent performance in:\n\n- Adhering to prompts\n \n- Visual quality\n \n- Anatomical accuracy\n \n- Handling complex scenes\n \n- Supporting multiple aspect ratios and resolutions from 0.1 to 2.0 megapixels.\n \n\n## Comparing FLUX.1 [dev] with Other Models\n\n### Accuracy and Quality\n\n- FLUX.1 [dev]: Offers solid performance and image quality, slightly below the Pro version but superior to mainstream SD 3 Ultra models.\n \n- FLUX.1 [pro]: The most powerful model, delivering the highest quality in image generation, making it a choice for demanding applications.\n \n- FLUX.1 [schnell]: The lightest and fastest version, optimized for speed and efficiency, suitable for applications where quick processing is prioritized over maximum image\n \n\n### Pricing\n\n- FLUX.1 [dev]: $0.030/image\n \n- FLUX.1 [pro]: $0.055/image\n \n- FLUX.1 [schnell]: $0.003/image\n \n\n### Targeted Users\n\n- FLUX.1 [dev]: Commonly used for development and testing. Ideal for users who need high-quality output but do not require the absolute highest performance.\n \n- FLUX.1 [pro]: Designed for professional users who demand the highest detail and quality of images.\n \n- FLUX.1 [schnell]: Optimized for users with limited resources.\n \n\n## API Endpoint\n\nThe FLUX.1 [dev] is available on Novita AI. We offer:\n\n - FLUX.1 \[dev\] - Text to Image\n \n- FLUX.1 \[dev\] - Image to Image\n \n- FLUX.1 \[dev\] LoRA - Text to Image\n \n- FLUX.1 \[dev\] Realism LoRA - Text to Image\n \n- FLUX.1 \[schnell\] - Text to Image\n \n- FLUX.1 \[schnell\] - Image to Image\n\n## Run on Novita AI\n\nFLUX.1 [dev] is now available on the Novita AI Instance! Get started quickly without any installation—setup takes just a minute or two. Enjoy a scalable solution capable of running models efficiently and affordably. Try out our Novita AI template today!\n\n## How Can You Use FLUX.1 [dev] with the Diffusers Python Library?\n\n \n\nTo use FLUX.1 [dev] with the diffusers python library, first install or upgrade diffusers\n bash\\npip install -U diffusers\\n\nThen you can use FluxPipeline to run the model\n\npython\\nimport torch\\nfrom diffusers import FluxPipeline\\npipe = FluxPipeline.from_pretrained(\"black-forest-labs/FLUX.1-dev\", torch_dtype=torch.bfloat16)\\npipe.enable_model_cpu_offload() #save some VRAM by offloading the model to CPU. Remove this if you have enough GPU power\\nprompt = \"A cat holding a sign that says hello world\"\\nimage = pipe(\\n prompt,\\n height=1024,\\n width=1024,\\n guidance_scale=3.5,\\n num_inference_steps=50,\\n max_sequence_length=512,\\n generator=torch.Generator(\"cpu\").manual_seed(0)\\n).images[0]\\nimage.save(\"flux-dev.png\")\\n\nTo learn more check out the diffusers documentation.\n\n----------\n\n \n\n## What Does a Typical FLUX.1 [dev] Workflow Look Like?\n\n plain text\\n {\"last_node_id\":36,\"last_link_id\":57,\"nodes\":[{\"id\":33,\"type\":\"CLIPTextEncode\",\"pos\":[390,400],\"size\":{\"0\":422.84503173828125,\"1\":164.31304931640625},\"flags\":{\"collapsed\":true},\"order\":4,\"mode\":0,\"inputs\":[{\"name\":\"clip\",\"type\":\"CLIP\",\"link\":54,\"slot_index\":0,\"label\":\"clip\"}],\"outputs\":[{\"name\":\"CONDITIONING\",\"type\":\"CONDITIONING\",\"links\":[55],\"slot_index\":0,\"label\":\"CONDITIONING\"}],\"title\":\"CLIP Text Encode (Negative Prompt)\",\"properties\":{\"Node name for S&R\":\"CLIPTextEncode\"},\"widgets_values\":[\"\"],\"color\":\"#322\",\"bgcolor\":\"#533\"},{\"id\":27,\"type\":\"EmptySD3LatentImage\",\"pos\":[471,455],\"size\":{\"0\":315,\"1\":106},\"flags\":{},\"order\":0,\"mode\":0,\"outputs\":[{\"name\":\"LATENT\",\"type\":\"LATENT\",\"links\":[51],\"shape\":3,\"slot_index\":0,\"label\":\"LATENT\"}],\"properties\":{\"Node name for S&R\":\"EmptySD3LatentImage\"},\"widgets_values\":[1024,1024,1],\"color\":\"#323\",\"bgcolor\":\"#535\"},{\"id\":35,\"type\":\"FluxGuidance\",\"pos\":[576,96],\"size\":{\"0\":211.60000610351562,\"1\":58},\"flags\":{},\"order\":5,\"mode\":0,\"inputs\":[{\"name\":\"conditioning\",\"type\":\"CONDITIONING\",\"link\":56,\"label\":\"conditioning\"}],\"outputs\":[{\"name\":\"CONDITIONING\",\"type\":\"CONDITIONING\",\"links\":[57],\"shape\":3,\"slot_index\":0,\"label\":\"CONDITIONING\"}],\"properties\":{\"Node name for S&R\":\"FluxGuidance\"},\"widgets_values\":[3.5]},{\"id\":8,\"type\":\"VAEDecode\",\"pos\":[1151,195],\"size\":{\"0\":210,\"1\":46},\"flags\":{},\"order\":7,\"mode\":0,\"inputs\":[{\"name\":\"samples\",\"type\":\"LATENT\",\"link\":52,\"label\":\"samples\"},{\"name\":\"vae\",\"type\":\"VAE\",\"link\":46,\"label\":\"vae\"}],\"outputs\":[{\"name\":\"IMAGE\",\"type\":\"IMAGE\",\"links\":[9],\"slot_index\":0,\"label\":\"IMAGE\"}],\"properties\":{\"Node name for S&R\":\"VAEDecode\"}},{\"id\":34,\"type\":\"Note\",\"pos\":[831,501],\"size\":{\"0\":282.8617858886719,\"1\":164.08004760742188},\"flags\":{},\"order\":1,\"mode\":0,\"properties\":{\"text\":\"\"},\"widgets_values\":[\"Note that Flux dev and schnell do not have any negative prompt so CFG should be set to 1.0. Setting CFG to 1.0 means the negative prompt is ignored.\"],\"color\":\"#432\",\"bgcolor\":\"#653\"},{\"id\":30,\"type\":\"CheckpointLoaderSimple\",\"pos\":[48,192],\"size\":{\"0\":315,\"1\":98},\"flags\":{},\"order\":2,\"mode\":0,\"outputs\":[{\"name\":\"MODEL\",\"type\":\"MODEL\",\"links\":[47],\"shape\":3,\"slot_index\":0,\"label\":\"MODEL\"},{\"name\":\"CLIP\",\"type\":\"CLIP\",\"links\":[45,54],\"shape\":3,\"slot_index\":1,\"label\":\"CLIP\"},{\"name\":\"VAE\",\"type\":\"VAE\",\"links\":[46],\"shape\":3,\"slot_index\":2,\"label\":\"VAE\"}],\"properties\":{\"Node name for S&R\":\"CheckpointLoaderSimple\"},\"widgets_values\":[\"flux1-dev-fp8.safetensors\"]},{\"id\":9,\"type\":\"SaveImage\",\"pos\":[1375,194],\"size\":{\"0\":985.3012084960938,\"1\":1060.3828125},\"flags\":{},\"order\":8,\"mode\":0,\"inputs\":[{\"name\":\"images\",\"type\":\"IMAGE\",\"link\":9,\"label\":\"images\"}],\"properties\":{},\"widgets_values\":[\"ComfyUI\"]},{\"id\":6,\"type\":\"CLIPTextEncode\",\"pos\":[384,192],\"size\":{\"0\":422.84503173828125,\"1\":164.31304931640625},\"flags\":{},\"order\":3,\"mode\":0,\"inputs\":[{\"name\":\"clip\",\"type\":\"CLIP\",\"link\":45,\"label\":\"clip\"}],\"outputs\":[{\"name\":\"CONDITIONING\",\"type\":\"CONDITIONING\",\"links\":[56],\"slot_index\":0,\"label\":\"CONDITIONING\"}],\"title\":\"CLIP Text Encode (Positive Prompt)\",\"properties\":{\"Node name for S&R\":\"CLIPTextEncode\"},\"widgets_values\":[\"cute anime girl with massive fluffy fennec ears and a big fluffy tail blonde messy long hair blue eyes wearing a maid outfit with a long black gold leaf pattern dress and a white apron mouth open placing a fancy black forest cake with candles on top of a dinner table of an old dark Victorian mansion lit by candlelight with a bright window to the foggy forest and very expensive stuff everywhere there are paintings on the walls\"],\"color\":\"#232\",\"bgcolor\":\"#353\"},{\"id\":31,\"type\":\"KSampler\",\"pos\":[816,192],\"size\":{\"0\":315,\"1\":262},\"flags\":{},\"order\":6,\"mode\":0,\"inputs\":[{\"name\":\"model\",\"type\":\"MODEL\",\"link\":47,\"label\":\"model\"},{\"name\":\"positive\",\"type\":\"CONDITIONING\",\"link\":57,\"label\":\"positive\"},{\"name\":\"negative\",\"type\":\"CONDITIONING\",\"link\":55,\"label\":\"negative\"},{\"name\":\"latent_image\",\"type\":\"LATENT\",\"link\":51,\"label\":\"latent_image\"}],\"outputs\":[{\"name\":\"LATENT\",\"type\":\"LATENT\",\"links\":[52],\"shape\":3,\"slot_index\":0,\"label\":\"LATENT\"}],\"properties\":{\"Node name for S&R\":\"KSampler\"},\"widgets_values\":[972054013131368,\"randomize\",20,1,\"euler\",\"simple\",1]}],\"links\":[[9,8,0,9,0,\"IMAGE\"],[45,30,1,6,0,\"CLIP\"],[46,30,2,8,1,\"VAE\"],[47,30,0,31,0,\"MODEL\"],[51,27,0,31,3,\"LATENT\"],[52,31,0,8,0,\"LATENT\"],[54,30,1,33,0,\"CLIP\"],[55,33,0,31,2,\"CONDITIONING\"],[56,6,0,35,0,\"CONDITIONING\"],[57,35,0,31,1,\"CONDITIONING\"]],\"groups\":[],\"config\":{},\"extra\":{\"ds\":{\"scale\":1,\"offset\":[56.42885371989581,-14.294664184783073]}},\"version\":0.4}\\n \n## Frequently Asked Questions\n\n### What are the differences between FLUX.1 [pro] and FLUX.1 [dev]?\n\nFLUX.1 [pro] is a high-quality image generation model suited for professional applications, while FLUX.1 [dev] is optimized for efficiency, ideal for development and experimentation.\n\n \n\n### How does FLUX.1 [dev] handle various text descriptions for image generation?\n\nFLUX.1 [dev] processes text descriptions by encoding them, understanding context through attention mechanisms, and generating high-quality images that match the input. It adapts to various prompts effectively.\n\n### What applications can benefit from using FLUX.1 [dev]?\n\nFLUX.1 [dev] can enhance applications in art, marketing, game design, content creation, e-commerce, education, VR/AR, and film, generating high-quality images from text prompts.\n\n \n\n### What is Flux software development?\n\nFlux is a declarative coordination language that simplifies concurrency, eliminating the need for threads or locks, allowing quick integration of C/C++ components.\n\n \n\n### Is Flux better than Redux?\n\nWhether Flux is better than Redux depends on your needs. Redux offers simpler architecture and an easier learning curve, while Flux provides more flexibility.\n\n \n\n# License\n\nThis model falls under the FLUX.1 \[dev\] Non-Commercial License.\n\nGet in Touch:**\n\n- Email: iris@novita.ai\n \n- Discord: novita.ai\n---\n\n> Novita AI is the All-in-one cloud platform that empowers your AI ambitions. Integrated APIs, serverless, GPU Instance — the cost-effective tools you need. Eliminate infrastructure, start free, and make your AI vision a reality.

Other Recommended Templates

koboldcpp

Run GGUF models easily with a KoboldAI UI. One File. Zero Install.

Axolotl

Accelerate AI Training with Axolotl on Novita AI

Gemma-2-2b-it

Optimized AI Performance with Gemma-2-2b-it on Novita AI

Facefusion v3.1.1

Seamlessly merge and enhance faces with Facefusion v2.6.0

Ready to build smarter? Start today.
Get started with Novita AI and unlock the power of affordable, reliable, and scalable AI inference for your applications.