131072 Context
$0.390 / 1M input tokens
$0.390 / 1M output tokens
Demo
API
Model Configuration
Response format
System Prompt
max_tokens
temperature
top_p
min_p
top_k
presence_penalty
frequency_penalty
repetition_penalty
README

Introduction

Qwen2 is the new series of Qwen large language models. For Qwen2, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters, including a Mixture-of-Experts model. This repo contains the instruction-tuned 7B Qwen2 model.

Compared with the state-of-the-art opensource language models, including the previous released Qwen1.5, Qwen2 has generally surpassed most opensource models and demonstrated competitiveness against proprietary models across a series of benchmarks targeting for language understanding, language generation, multilingual capability, coding, mathematics, reasoning, etc.

Qwen2-7B-Instruct supports a context length of up to 131,072 tokens, enabling the processing of extensive inputs.

For more details, please refer to our blog, GitHub, and Documentation.

Model Details

Qwen2 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes.

Training details

We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.

How to use

You can choose 3 programming languages to access our qwen/qwen-2-7b-instruct model.

HTTP/cURL

We provide compatibility with the OpenAI API standard

The API Base URL

1https://api.novita.ai/v3/openai

Example of Using Chat Completions API

Generate a response using a list of messages from a conversation

1# Get the Novita AI API Key by referring to: https://novita.ai/docs/get-started/quickstart.html#_2-manage-api-key 2export API_KEY="{YOUR Novita AI API Key}" 3 4curl "https://api.novita.ai/v3/openai/chat/completions" \ 5 -H "Content-Type: application/json" \ 6 -H "Authorization: Bearer ${API_KEY}" \ 7 -d '{ 8 "model": "qwen/qwen-2-7b-instruct", 9 "messages": [ 10 { 11 "role": "system", 12 "content": "Act like you are a helpful assistant." 13 }, 14 { 15 "role": "user", 16 "content": "Hi there!" 17 } 18 ], 19 "max_tokens": 512 20}'

The response may look like this

1{ 2 "id": "chat-5f461a9a23a44ef29dbd3124b891afc0", 3 "object": "chat.completion", 4 "created": 1731584707, 5 "model": "qwen/qwen-2-7b-instruct", 6 "choices": [ 7 { 8 "index": 0, 9 "message": { 10 "role": "assistant", 11 "content": "Hello! It's nice to meet you. How can I assist you today? Do you have any questions or topics you'd like to discuss? I'm here to help with anything you need." 12 }, 13 "finish_reason": "stop", 14 "content_filter_results": { 15 "hate": { "filtered": false }, 16 "self_harm": { "filtered": false }, 17 "sexual": { "filtered": false }, 18 "violence": { "filtered": false }, 19 "jailbreak": { "filtered": false, "detected": false }, 20 "profanity": { "filtered": false, "detected": false } 21 } 22 } 23 ], 24 "usage": { 25 "prompt_tokens": 46, 26 "completion_tokens": 40, 27 "total_tokens": 86, 28 "prompt_tokens_details": null, 29 "completion_tokens_details": null 30 }, 31 "system_fingerprint": "" 32}

If you want to receive a response via streaming, simply pass "stream": true in the request (see the difference on line 20). An example is provided.

1# Get the Novita AI API Key by referring to: https://novita.ai/docs/get-started/quickstart.html#_2-manage-api-key 2export API_KEY="{YOUR Novita AI API Key}" 3 4curl "https://api.novita.ai/v3/openai/chat/completions" \ 5 -H "Content-Type: application/json" \ 6 -H "Authorization: Bearer ${API_KEY}" \ 7 -d '{ 8 "model": "qwen/qwen-2-7b-instruct", 9 "messages": [ 10 { 11 "role": "system", 12 "content": "Act like you are a helpful assistant." 13 }, 14 { 15 "role": "user", 16 "content": "Hi there!" 17 } 18 ], 19 "max_tokens": 512, 20 "stream": true 21}'

The response may look like this

1data: {"id":"chat-d821b951d6ff43ab838d18137aef7d0a","object":"chat.completion.chunk","created":1731586102,"model":"meta-llama/llama-3.1-8b-instruct","choices":[{"index":0,"delta":{"role":"assistant"},"finish_reason":null,"content_filter_results":{"hate":{"filtered":false},"self_harm":{"filtered":false},"sexual":{"filtered":false},"violence":{"filtered":false},"jailbreak":{"filtered":false,"detected":false},"profanity":{"filtered":false,"detected":false}}}],"system_fingerprint":""} 2 3... 4 5data: {"id":"chat-d821b951d6ff43ab838d18137aef7d0a","object":"chat.completion.chunk","created":1731586102,"model":"meta-llama/llama-3.1-8b-instruct","choices":[{"index":0,"delta":{"content":"n, ne"},"finish_reason":null,"content_filter_results":{"hate":{"filtered":false},"self_harm":{"filtered":false},"sexual":{"filtered":false},"violence":{"filtered":false},"jailbreak":{"filtered":false,"detected":false},"profanity":{"filtered":false,"detected":false}}}],"system_fingerprint":""} 6 7data: {"id":"chat-d821b951d6ff43ab838d18137aef7d0a","object":"chat.completion.chunk","created":1731586102,"model":"meta-llama/llama-3.1-8b-instruct","choices":[{"index":0,"delta":{"content":"ed"},"finish_reason":null,"content_filter_results":{"hate":{"filtered":false},"self_harm":{"filtered":false},"sexual":{"filtered":false},"violence":{"filtered":false},"jailbreak":{"filtered":false,"detected":false},"profanity":{"filtered":false,"detected":false}}}],"system_fingerprint":""} 8 9data: {"id":"chat-d821b951d6ff43ab838d18137aef7d0a","object":"chat.completion.chunk","created":1731586102,"model":"meta-llama/llama-3.1-8b-instruct","choices":[{"index":0,"delta":{"content":" assi"},"finish_reason":null,"content_filter_results":{"hate":{"filtered":false},"self_harm":{"filtered":false},"sexual":{"filtered":false},"violence":{"filtered":false},"jailbreak":{"filtered":false,"detected":false},"profanity":{"filtered":false,"detected":false}}}],"system_fingerprint":""} 10 11data: {"id":"chat-d821b951d6ff43ab838d18137aef7d0a","object":"chat.completion.chunk","created":1731586102,"model":"meta-llama/llama-3.1-8b-instruct","choices":[{"index":0,"delta":{"content":"s"},"finish_reason":null,"content_filter_results":{"hate":{"filtered":false},"self_harm":{"filtered":false},"sexual":{"filtered":false},"violence":{"filtered":false},"jailbreak":{"filtered":false,"detected":false},"profanity":{"filtered":false,"detected":false}}}],"system_fingerprint":""} 12 13data: {"id":"chat-d821b951d6ff43ab838d18137aef7d0a","object":"chat.completion.chunk","created":1731586102,"model":"meta-llama/llama-3.1-8b-instruct","choices":[{"index":0,"delta":{"content":"tan"},"finish_reason":null,"content_filter_results":{"hate":{"filtered":false},"self_harm":{"filtered":false},"sexual":{"filtered":false},"violence":{"filtered":false},"jailbreak":{"filtered":false,"detected":false},"profanity":{"filtered":false,"detected":false}}}],"system_fingerprint":""} 14 15data: {"id":"chat-d821b951d6ff43ab838d18137aef7d0a","object":"chat.completion.chunk","created":1731586102,"model":"meta-llama/llama-3.1-8b-instruct","choices":[{"index":0,"delta":{"content":"ce wi"},"finish_reason":null,"content_filter_results":{"hate":{"filtered":false},"self_harm":{"filtered":false},"sexual":{"filtered":false},"violence":{"filtered":false},"jailbreak":{"filtered":false,"detected":false},"profanity":{"filtered":false,"detected":false}}}],"system_fingerprint":""} 16 17... 18 19data: {"id":"chat-d821b951d6ff43ab838d18137aef7d0a","object":"chat.completion.chunk","created":1731586102,"model":"meta-llama/llama-3.1-8b-instruct","choices":[{"index":0,"delta":{"content":" "},"finish_reason":null,"content_filter_results":{"hate":{"filtered":false},"self_harm":{"filtered":false},"sexual":{"filtered":false},"violence":{"filtered":false},"jailbreak":{"filtered":false,"detected":false},"profanity":{"filtered":false,"detected":false}}}],"system_fingerprint":""} 20 21data: {"id":"chat-d821b951d6ff43ab838d18137aef7d0a","object":"chat.completion.chunk","created":1731586102,"model":"meta-llama/llama-3.1-8b-instruct","choices":[{"index":0,"delta":{"content":"just want to chat?"},"finish_reason":"stop","content_filter_results":{"hate":{"filtered":false},"self_harm":{"filtered":false},"sexual":{"filtered":false},"violence":{"filtered":false},"jailbreak":{"filtered":false,"detected":false},"profanity":{"filtered":false,"detected":false}}}],"system_fingerprint":""} 22 23data: [DONE]

Model Parameters

Feel free to check out our documentation for more details.

Python

First, install the official OpenAI Python client

1pip install 'openai>=1.0.0'

and then you can run inferences with us

Example of Using Chat Completions API

Generate a response using a list of messages from a conversation

1from openai import OpenAI 2 3client = OpenAI( 4 base_url="https://api.novita.ai/v3/openai", 5 # Get the Novita AI API Key by referring to: https://novita.ai/docs/get-started/quickstart.html#_2-manage-api-key. 6 api_key="<YOUR Novita AI API Key>", 7) 8 9model = "qwen/qwen-2-7b-instruct" 10stream = True # or False 11max_tokens = 512 12 13chat_completion_res = client.chat.completions.create( 14 model=model, 15 messages=[ 16 { 17 "role": "system", 18 "content": "Act like you are a helpful assistant.", 19 }, 20 { 21 "role": "user", 22 "content": "Hi there!", 23 } 24 ], 25 stream=stream, 26 max_tokens=max_tokens, 27) 28 29if stream: 30 for chunk in chat_completion_res: 31 print(chunk.choices[0].delta.content or "") 32else: 33 print(chat_completion_res.choices[0].message.content)

If you set stream: true (line 10), the print may look like this

1It' 2s 3 ni 4ce to 5meet you. 6Is 7 the 8re so 9meth 10ing I 11 can h 12e 13lp 14you wi 15th t 16oday, 17 or 18 woul 19d 20 you like to chat?

If you don't want to receive a response via streaming, simply set stream: false. The output will look like this

1How can I assist you today? Do you have any questions or topics you'd like to discuss?

Model Parameters

Feel free to check out our documentation for more details.

JavaScript

First, install the official OpenAI JavaScript client

1npm install openai

and then you can run inferences with us in the browser or in node.js

Example of Using Chat Completions API

Generate a response using a list of messages from a conversation

1import OpenAI from "openai"; 2 3const openai = new OpenAI({ 4 baseURL: "https://api.novita.ai/v3/openai", 5 apiKey: "<YOUR Novita AI API Key>", 6}); 7const stream = true; // or false 8 9async function run() { 10 const completion = await openai.chat.completions.create({ 11 messages: [ 12 { 13 role: "system", 14 content: "Act like you are a helpful assistant.", 15 }, 16 { 17 role: "user", 18 content: "Hi there!" 19 } 20 ], 21 model: "qwen/qwen-2-7b-instruct", 22 stream 23 }); 24 25 if (stream) { 26 for await (const chunk of completion) { 27 if (chunk.choices[0].finish_reason) { 28 console.log(chunk.choices[0].finish_reason); 29 } else { 30 console.log(chunk.choices[0].delta.content); 31 } 32 } 33 } else { 34 console.log(JSON.stringify(completion)); 35 } 36} 37 38run();

If you set stream: true (line 7), the print may look like this

1It' 2s 3 nic 4e to 5 m 6eet you 7. Ho 8w can 9I 10 as 11sist 12 you 13toda 14y? Do you 15hav 16e any q 17uest 18io 19ns or 20 to 21pics you 22' 23d 24li 25ke to 26 di 27scuss 28stop

If you don't want to receive a response via streaming, simply set stream: false. The output will look like this

1{ 2 "id": "chat-a3ff0e39b4c24abcbd258ab1a1f38db9", 3 "object": "chat.completion", 4 "created": 1731642457, 5 "model": "qwen/qwen-2-7b-instruct", 6 "choices": [ 7 { 8 "index": 0, 9 "message": { 10 "role": "assistant", 11 "content": "How can I help you today? Would you like to talk about something specific or just have a chat? I'm here to assist you with any questions or information you might need." 12 }, 13 "finish_reason": "stop", 14 "content_filter_results": { 15 "hate": { "filtered": false }, 16 "self_harm": { "filtered": false }, 17 "sexual": { "filtered": false }, 18 "violence": { "filtered": false }, 19 "jailbreak": { "filtered": false, "detected": false }, 20 "profanity": { "filtered": false, "detected": false } 21 } 22 } 23 ], 24 "usage": { 25 "prompt_tokens": 46, 26 "completion_tokens": 37, 27 "total_tokens": 83, 28 "prompt_tokens_details": null, 29 "completion_tokens_details": null 30 }, 31 "system_fingerprint": "" 32}

Model Parameters

Feel free to check out our documentation for more details.

Evaluation

We briefly compare Qwen2-7B-Instruct with similar-sized instruction-tuned LLMs, including Qwen1.5-7B-Chat. The results are shown below:

DatasetsLlama-3-8B-InstructYi-1.5-9B-ChatGLM-4-9B-ChatQwen1.5-7B-ChatQwen2-7B-Instruct
English
MMLU68.469.572.459.570.5
MMLU-Pro41--29.144.1
GPQA34.2--27.825.3
TheroemQA23--14.125.3
MT-Bench8.058.28.357.68.41
Coding
Humaneval62.266.571.846.379.9
MBPP67.9--48.967.2
MultiPL-E48.5--27.259.1
Evalplus60.9--44.870.3
LiveCodeBench17.3--626.6
Mathematics
GSM8K79.684.879.660.382.3
MATH3047.750.623.249.6
Chinese
C-Eval45.9-75.667.377.2
AlignBench6.26.97.016.27.21